
K-Means, Expectation
Maximization and

Segmentation
D.A. Forsyth, CS543

K-Means

• Choose a fixed number of clusters
• Choose cluster centers and point-cluster allocations to

minimize error

• can’t do this by search
• there are too many possible allocations.

• Algorithm
• fix cluster centers; allocate points to closest cluster
• fix allocation; compute best cluster centers
• x could be any set of features for which we can compute a distance

(careful about scaling)

€

x j − µ i
2

j∈elements of i'th cluster
∑

 i∈clusters

∑

K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color

K-means using color alone, 11 segments

Image Clusters on color

K-means using
color alone,
11 segments.

K-means using colour and
position, 20 segments

Mixture models and segmentation

• In k-means, we clustered pixels using hard assignments
• each pixel goes to closest cluster center
• but this may be a bad idea

• pixel may help estimate more than one cluster

• We will build a probabilistic mixture model

P (x|µ1, . . . , µk,π1, . . . ,πk,Σ) =
∑

i

πiP (x|µi,Σ)

Mixture model

• Interpretation:
• obtain pixel by

• choosing a mixture component
• given that component, choosing pixel

• Natural to have each mixture component be a Gaussian

P (x|µ1, . . . , µk,π1, . . . ,πk,Σ) =
∑

i

πiP (x|µi,Σ)

Mixture components

• Gaussians
• are oriented “blobs” in the feature space
• we will assume covariance is known, and work with mean
• expression below

P (x|µi,Σ) ∝ exp
−(x− µi)Σ−1(x− µi)

2

Problem: Learning and IDLL

• We must estimate the mixture weights and means
• Maximising likelihood is very hard

• in this form, sometimes known as incomplete data log-likelihood

L(θ) =
∑

i

log P (xi|θ) =
∑

i

log

∑

j

πjP (xi|µj ,Σ)

Complete Data Log-likelihood

• Learning would be easy if we knew which blob each data
item came from
• weights: count what fraction came from which blob
• means: average data items

• Introduce a set of variables
• to tell which mixture component a data item came from
• d_{ij} is 1 if data item i comes from blob j

• 0 otherwise

P (xi|δi, θ) =
∏

j

P (xi|µj)δij

Complete Data Log-likelihood

• Write the probability for x_i, d_ij conditioned on params

P (xi, δi|θ) = P (xi|δi, θ)P (δi|θ)
= (

∏

j

[P (xi|µj)πj]
δij)

Complete Data Log-likelihood

• Log likelihood of x, allocation, conditioned on parameters
• Not obviously helpful

• but notice the useful form - think of d as switches
•

log P (x, δ|θ) =
∑

i

log P (xi, δi|θ)

=
∑

ij

[δij {log P (xi|µj) + log πj}]

Learning and CDLL

• Introduce hidden variables to get complete data log-
likelihood
• d_{ij} is 1 if data item i comes from blob j

• 0 otherwise
• Learning would be easy if we knew which blob each data item came from

• weights: count what fraction came from which blob
• means: average data items

• But we don’t

Lc(θ, δij) =
∑

ij

δij log (πjP (xi|µj ,Σ))

Working with CDLL

• Notice:
• with an estimate of the parameters, can estimate blobs data came from

• this could be a soft estimate
• we could plug this in, then reestimate the parameters

• Formal procedure:
• start with estimate
• form Q function, below (The E-step)

• maximise in parameters (The M-step)
• Iterate

Q(θ; θ(n)) = EP (δ|x,θ(n)) (Lc(θ, δ))

The E-step for Gaussian mixtures

• Notice that the expression for the Q function simplifies

EP (δ|x,θ(n)) (Lc(θ, δ)) = EP (δ|x,θ(n))

∑

ij

δij [log πj + log P (xi|µj ,Σ)]

=

∑

ij

P (δij = 1|x, θ(n)) [log πj + log P (xi|µj ,Σ)]

The E-step for Gaussian mixtures

• We rearrange using probability identities

P (δij = 1|x, θ(n)) =
P (x, δij = 1|θ(n))

P (x|θ(n))

=
P (x|δij = 1, θ(n))P (δij = 1|θ(n))

P (x|θ(n))

=
P (x|δij = 1, θ(n))P (δij = 1|θ(n))

P (x|δij = 1, θ(n))P (δij = 1|θ(n)) + P (x, δij = 0|θ(n))

The E step for Gaussian mixtures

• And substitute

P (xi|δij = 1, θ(n)) =
1
Z

exp
−(xi − µ(n)

j)Σ−1(xi − µ(n)
j)

2

P (xi, δij = 0|θ(n)) =
∑

k !=j

πk
1
Z

exp
−(xi − µ(n)

k)Σ−1(xi − µ(n)
k)

2

P (δij = 1|θ(n)) = πj

• We must maximise

• in the mixture weights and in the means
• we can drop log Z

The M step for Gaussian mixtures

∑

ij

P (δij = 1|x, θ(n)) [log πj + log P (xi|µj ,Σ)] =

∑

ij

P (δij = 1|x, θ(n))
[
log πj −

−(xi − µj)Σ−1(xi − µj)
2

− log Z

]

• differentiate, set to zero, etc.
• regard the expectations as “soft counts”

• so mixture weights from soft counts as:

• and means from soft counts as:

Two ways

πj =
∑

i P (δij = 1|xi, θ(n))∑
i,j P (δij = 1|xi, θ(n))

µj =
∑

i xiP (δij = 1|xi, θ(n))∑
i,j P (δij = 1|xi, θ(n))

Figure from “Color and Texture Based Image Segmentation Using EM and Its Application to Content
Based Image Retrieval”,S.J. Belongie et al., Proc. Int. Conf. Computer Vision, 1998, c1998, IEEE

Segmentation with EM

Affinity matrix

Good split

Measuring Affinity

Intensity

Texture

Distance

€

aff x, y() = exp − 1
2σ i

2

I x()− I y() 2()

€

aff x, y() = exp − 1
2σ d

2

x − y 2()

€

aff x, y() = exp − 1
2σ t

2

c x()− c y() 2()

Scale affects affinity

• Simplest idea: we want a vector a giving the association
between each element and a cluster

• We want elements within this cluster to, on the whole,
have strong affinity with one another

• We could maximize

• But need the constraint
• This is an eigenvalue problem - choose the eigenvector of A with largest

eigenvalue

Eigenvectors and cuts

€

aTAa

€

aTa = 1

Example eigenvector

points

matrix

eigenvector

More than two segments

• Two options
• Recursively split each side to get a tree, continuing till the eigenvalues are

too small
• Use the other eigenvectors

Normalized cuts

• Current criterion evaluates within cluster similarity, but
not across cluster difference

• Instead, we’d like to maximize the within cluster
similarity compared to the across cluster difference

• Write graph as V, one cluster as A and the other as B•
Maximize

• i.e. construct A, B such that their within cluster similarity is high
compared to their association with the rest of the graph

€

assoc(A,A)
assoc(A,V)

 +

assoc(B,B)
assoc(B,V)

• Write a vector y whose elements are 1 if item is in A, -b if
it’s in B

• Write the matrix of the graph as W, and the matrix which
has the row sums of W on its diagonal as D, 1 is the vector
with all ones.

• Criterion becomes

• and we have a constraint
• This is hard to do, because y’s values are quantized

Normalized cuts

€

miny
yT D −W()y

yTDy

€

yTD1 = 0

• Instead, solve the generalized eigenvalue problem

• which gives

• Now look for a quantization threshold that maximises the
criterion --- i.e all components of y above that threshold
go to one, all below go to -b

Normalized cuts

€

maxy y
T D −W()y() subject to yTDy = 1()

€

D −W()y = λDy

Figure from “Image and video segmentation: the normalised cut framework”,
by Shi and Malik, copyright IEEE, 1998

